Oxidative stress induces nucleo-cytoplasmic translocation of pancreatic transcription factor PDX-1 through activation of c-Jun NH(2)-terminal kinase.
نویسندگان
چکیده
Oxidative stress is induced in pancreatic beta-cells under diabetic conditions and causes beta-cell dysfunction. Antioxidant treatment of diabetic animals leads to recovery of insulin biosynthesis and increases the expression of its controlling transcription factor, pancreatic duodenal homeobox-1 (PDX-1), in pancreatic beta-cells. Here, we show that PDX-1 is translocated from the nuclei to the cytoplasm of pancreatic beta-cells in response to oxidative stress. When oxidative stress was charged upon beta-cell-derived HIT-T15 cells, both endogenous PDX-1 and exogenously introduced green fluorescent protein-tagged PDX-1 moved from the nuclei to the cytoplasm. The addition of a dominant negative form of c-Jun NH(2)-terminal kinase (JNK) inhibited oxidative stress-induced PDX-1 translocation, suggesting an essential role of JNK in mediating this phenomenon. Whereas the nuclear localization signal (NLS) in PDX-1 was not affected by oxidative stress, leptomycin B, a specific inhibitor of the classical leucine-rich nuclear export signal (NES), inhibited nucleo-cytoplasmic translocation of PDX-1 induced by oxidative stress. Moreover, we identified an NES at position 82-94 of the mouse PDX-1 protein. Thus, our present results revealed a novel mechanism that negatively regulates PDX-1 function. The identification of the NES, which overrides the function of the NLS in an oxidative stress-responsive, JNK-dependent manner, supports the complicated regulation of PDX-1 function in vivo and may further the understanding of beta-cell pathophysiology in diabetes.
منابع مشابه
The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation.
It has been shown that oxidative stress and activation of the c-Jun N-terminal kinase (JNK) pathway induce the nucleocytoplasmic translocation of the pancreatic transcription factor PDX-1, which leads to pancreatic beta-cell dysfunction. In this study, we have shown that the forkhead transcription factor Foxo1/FKHR plays a role as a mediator between the JNK pathway and PDX-1. Under oxidative st...
متن کاملInvolvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression.
Oxidative stress, which is found in pancreatic beta-cells in the diabetic state, suppresses insulin gene transcription and secretion, but the signaling pathways involved in the beta-cell dysfunction induced by oxidative stress remain unknown. In this study, subjecting rat islets to oxidative stress activates JNK, p38 MAPK, and protein kinase C, preceding the decrease of insulin gene expression....
متن کاملEnteral exclusion increases MAP kinase activation and cytokine production in a model of gallstone pancreatitis.
BACKGROUND We have previously demonstrated that enteral exclusion augments pancreatic p38 mitogen-activated protein (MAP) kinase activation and tumor necrosis factor-alpha (TNF-alpha) production after bile-pancreatic duct ligation in rats. METHODS In the present study, we evaluated c-Jun NH(2)-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) activation, and cytokine produ...
متن کاملThe MAPKKKs Ste11 and Bck1 jointly transduce the high oxidative stress signal through the cell wall integrity MAP kinase pathway
Oxidative stress stimulates the Rho1 GTPase, which in turn induces the cell wall integrity (CWI) MAP kinase cascade. CWI activation promotes stress-responsive gene expression through activation of transcription factors (Rlm1, SBF) and nuclear release and subsequent destruction of the repressor cyclin C. This study reports that, in response to high hydrogen peroxide exposure, or in the presence ...
متن کاملResponse to Rotenone Is Glucose-Sensitive in a Model of Human Acute Lymphoblastic Leukemia: Involvement of Oxidative Stress Mechanism, DJ-1, Parkin, and PINK-1 Proteins
To establish the effect of low (11 mM) and high (55 mM) glucose concentrations (G11, G55) on Jurkat cells exposed to rotenone (ROT, a class 5 mitocan). We demonstrated that ROT induces apoptosis in Jurkat cells cultured in G11 by oxidative stress (OS) mechanism involving the generation of anion superoxide radical (O2(∙-), 68%)/hydrogen peroxide (H2O2, 54%), activation of NF-κB (32%), p53 (25%),...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 52 12 شماره
صفحات -
تاریخ انتشار 2003